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This paper is a step towards a systematic theory of the transifigitistering phenomenon in random
networks. A static framework is used, with adjacency matrix playing the role of the dynamical variable. Hence,
our model is a matrix model, where matrices are random, but their elements take values 0 and 1 only.
Confusion present in some papers where earlier attempts to incorporate transitivity in a similar framework have
been made is hopefully dissipated. Inspired by more conventional matrix models, analytic techniques to
develop a static model with nontrivial clustering are introduced. Computer simulations complete the analytic

discussion.
DOI: 10.1103/PhysReVvE.69.026106 PACS nunter05.50+q, 05.40-a, 02.50.Cw, 87.18.Sn
[. INTRODUCTION Probably the simplest extension of the classical theory

consists in setting(M)=gTr(M?3), directly proportional to

Network model builders are currently adopting one of thethe number of triangles. This has already been attempted
two complementary approaches. Either a network is conmany years ago by Straul. His results are summarized in
structed step by step, by adding successive nodes and linkgie recent review4]: “There is however, one unfortunate
or else, what is constructed is a static statistical ensemble (Hathok_)gy o |f, for examp|e, we include a term in the
networks. Each of these two approaches has its merits angamiltonian that is linear in the number of triangles in the
shortcomlngs._EvoIvmg netyvork models shed light on thegraph, with an accompanying positive temperature favoring
growth dynamics, while static ensembles are more appropriqese triangles, then the model has the tendency to condense,
ate for the study of structural traits. The classical model ok, ing regions of the graph that are essentially complete
Erdcs and Reyi [1] has been generalized so as to InCorpo'cliques—subset of vertices within which every possible link

rate arbitrary d(_egree d|str|but!ons and even some CorrE’Iaéxists ... Networks in the real world however do not seem
tions, but a serious shortcoming of the static models pro-

posed so far is that they do not capture the common featur%) Ihave this sort of cIumpy transmvny. . . .
of most real networks: neighbors of a randomly chosen nod tappears to us that this negatlye conclgsmn, which faith-
are directly linked to each other much more frequently tha 'uIIy reflects the cpntent of R,e[9], Is not quite nght. Therg
by chance, so that many short loops appear. The network§ N0thing wrong in Strauss's work. However, it is very in-
tend to have locally a tree structufeee Refs[2—4]). And, complete and due to_thls mcompleten_ess myoluntanly mis-
as pointed out in Ref[4], “for general networks we cur- leéading. One of the aims of our paper is to give a fresh and
rently have no idea how to incorporate transitivity into ran-comprehensive discussion of Strauss's model.
dom graph models.” In this paper we fill this gap, at least The essence of Strauss’s argument is as follows: assuming
partially. The attention of the reader should be called to théhat the ratioL/N is kept constant, one can easily convince
very recent Refd.5—-7], where the clustering problem is also oneself that there exist pathological configurations for which
addressed, but following very different avenues. Tr(M3)«N%2 The contribution of such a configuration to
Graphs are a mathematical representation of networkshe partition function is explosive in the lardelimit, since
For definiteness we consider in this paper undirected graphis cannot be tamed by the entropy factor falling roughly
only. Let us denote bil the number of nodes in a graph and speaking like the inverse of the number of graphs, i.e., like
by M={M;;},i,j=1,2,... N the symmetric incidence ma- exp(—const< N In N). Thus, however small the couplings,
trix, with M;; =0 on the diagonal antfl;; =1 or 0 depending  the only stable states of the system are the pathological ones,
on whe_ther the. nodes Iabeldadand.j are conn(.act.ed or not. provided the system is large enough.
Who]e information about a graph is encoded in its ad;acency As we will show later on, the pathological crumpled
matrix. A general random graph model can be defined byaes the Strauss phase—are separated from a smooth
introducing the partition functior(see, for example, Ref. phase by a barrier that grows with increashgf the system
[8]): is prepared in the smooth phase, it has a very tiny probability
to roll out over the barrier to the Strauss phase. This prob-
z=2 eSM(Tr(M?)-2L), (1) ability tends rapidly to zero in the thermodynamic limit.
M . . . .
Strauss has missed this point, because the systems he simu-
whereL is the number of links an8(M) is a function which  lated were too small to signal the relative stability of the
we will call the action. The sum is over all possible adja-smooth phase. Now, for all practical purposes one can work
cency matricesM. The simplest choice iS(M)=0. The inthe smooth phase, ignoring the instability. This is what one
corresponding graphs are those of the classical theory afoes on many occasions in physics, in particular in the con-
Erdcs and Rayi [1]: the value of the ratid./N determines a text of matrix models, where the instability also goes away
variant of the model. when the matrix size tends to infinity.
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We have mentioned matrix models on purpose. Thg4), a convergent series. This series is summed in Sec. I D.
theory of random matrices is an important branch of statisti\We obtain a simple analytic formula for the average number
cal physics, with applications ranging from nuclear physicsof triangles. We also show that the introduction of the inter-
to string theory. Some of the techniques developed in thisiction gTr(M?®) leaves the degree distribution unmodified.
theory can be adapted to a study of the model defined by Eq.he nonperturbative dynamics is studied in detail in Sec. lll,
(1). This is also a matrix model, albeit dealing with rather using the Monte Carlo technique of numerical simulation. In
special matrices: in standard matrix models the matrix elea range of model parameters we find a remarkable agreement
ments are continuous random variables. between the data and the perturbative predictions, showing

The form(1) of the partition function turns out to be very that the nonperturbative phenomena are negligible in this
convenient for numerical simulations. In analytical calcula-range. However, at large enough coupling strength the per-
tions it will be convenient to use a slightly different formu- turbation theory breaks down, as expected. The transition
lation of the model, getting rid of thé function and allow- point has an interesting scaling witlh This enables us to
ing small fluctuations of the number of links The partition  define the model so as to get a nontrivial behavior of the
function Z will be, up to a factor, the average of e(n clustering coefficient. In Sec. IV we discuss possible gener-
Erdcs-Renyi theory. We first assume that a link is occupied alizations. This section contains also a summary of this work
with probability p. Hence, for giverN andL the Erds-Renyi  and a conclusion.
weight is

Il. PERTURBATION SERIES

1 -L
L N(N-1)/2-L _ N(N—1)/2
pH(1—p)NN= DL = (1~ p)N(N=D) (B_l) ) A. An analogy

Before entering into the main discussion of our problem
let us consider an elementary example, to help those readers
who are not conversant with field theoretic arguments:

Consider the following integral:

. 3 =+ /%J dxeg(—x2/2+gx3/3—ex4), 6)

In short, we have traded th&function for a Gaussian.

This primary weight is further multiplied by exg). Inserting
Eq. (2), integrating ovel, and neglecting an irrelevant fac-
tor, we obtain the modified partition function

7Z=>, EXF{—%m(%—l)TI’(MZ)—FS(M)

M

where € is infinitesimal and has been introduced only in

In most of this paper we s&M)=gTr(M?), as in Ref. . : I,
; ._jorder to satisfy puristst can be regarded as the partition
[9]. Thus, formally and up to a rescaling of the dyn‘fcm]lc{ilfunction of a particle subject to the combined action of a

variable the model looks like the much studied matrix mOdelpotentiaI and of a heat bath. Formally, the integrand re-

1 sembles the summand in E@), except that the integration
Zmatrix=f dMm exp{ - ETr(M2)+gTr(M3)), (4)  variable is here just a number.

Consider a random walk in the potential given by the
exponent in Eq(6). Assume that in some initial moment the
Sparticle is located ak=0. This is a metastable state. The
particle eventually rolls over the barrier and reaches the deep
minimum of the free energy at~g/4e. As is well known,
the lifetime 7 of the metastable state is given by the Arrhen-
dm=]] dm;, (5)  ius formula[10],

i<j

where one integrates over all possible symmetticN ma-
trices. The difference is in the integration measure, which i
discrete in Eq(3) and continuous,

in Eq. (4). This difference is crucial, of course, but we would T eB/692- (7)
rather like to insist on the similarities between the two mod-
els. In any case, the example of the matrix model is for us &he decay of the metastable configuration is a nonperturba-
guide in our study. tive phenomenon. The escape time has an essential singular-
The plan of the paper is as follows. In Sec. Il we developity as a function of the coupling. Of course, this nonper-
exp(@® in powers ofS and discuss the features of the pertur-turbative phenomenon only occurs at nonzero temperature.
bation series obtained by integrating term by term. In SecWhen 8=« the particle stays forever in its initial position.
IIA we recall how the behavior of the perturbation seriesNaotice that the transition is more a crossover than a genuine
reflects the existence of an instability of the theory, by conphase transition. It occurs when the exponent in(Zgis of
sidering two examples. In Sec. I B we introduce a helpfulorder unity, but the value off where the transition occurs
diagrammatic representation of the perturbative contributionsnay slightly depend on how the random walk is performed.
to the partition function. These diagrams are counted in Sec. In more complicated models the Arrhenius formula is not
[IC. It is argued that at finiteN the perturbation series is so readily derived. But nonperturbative dynamics shows up,
pathological, indicating that nonperturbative phenomena aré present, in the structure of the perturbation series in the
in action. However, keeping only the terms that are nonvaneoupling constant. Let us expand the exponential in (B.
ishing in the limitN— one gets, like in the matrix model with respect to terms other than the quadratic one:
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A &<D8 M ; Aj FIG. 1. Diagrams representif@®(g?) contri-

butions to the partition function.

(a) (b) (c) (d)
1 which is the number of ways to chookeamongN indices,
1 F(3k+ E) 2\ k the different permutations of the selected indices being con-

o5 [1+0(e)]. (8)  sidered as distinct. We have ME)==,,MMpMca,

which is up to the factor 3! the numb@rof triangles in the

) . , - , graph. We represent a matrix elemét, by a line segment.

It is evident that the series coefficients grow factorially and|,qicesa b are then associated with the ends of the segment.
that t_he_ series has zero ra_ldlus 01_‘ convergence. Thls_ is a chafpe produciM ,,M M . is represented by a triangle. Notice
acterlsUc S|gnal._We will find a similar behavior, at finl& 5 M ;M M. is a random variable which can only take
in the model defined by Ed3). value 0 or 1. Since the diagonal elements\bfire by defi-

To conclud.e. this Se.C“O.” let us mer)tion what hap.pen%ition 0 the probability that this product equals 1 ps.
when the partition function instead of being a Riemann inte~rpare aren® configurations of indices which correspond to

gral, Iike_in Eq.(6), i_s a matrix i_ntegral, _Iike in Eq(4): A nonvanishing contributions to the sum. Hence
perturbation expansion can again be defined and the terms in

the expansion can be given a diagrammatic representation. A (TrM3)2r=p3N2. (11)
clever manner of cataloging these diagrams has been devised

by 't Hooft [11]. One first feSC&bM*\_/ﬁM:g—)g/\/ﬁ,f The power ofp is equal to the number of the sides of the

on a two-dimensional surface. Such a surface is always @dices one is summing over. The contribution to the pertur-
sphere with a number of handles. Classes of diagrams agtion series is, of coursgp3N3.

characterized by the numbkrof these handles and the con- A complication arises as one goes to higher order of the
tributions of all diagrams belonging to the same class hav@ertyrbation theory. As one multiplies the traces one pro-
the saméN dependence~2". Summing over alh one gets  guces string ,,My. . . . Mo where some pairs of indices,

a badly divergent series. However, in the lifNt~> the  possibly interchanged likab andba, repeat themselves re-
spherical topology t{=0) dominates and the corresponding ferring to the same element of the adjacency matrix. The
series has a nonzero radius of convergence. We will seek @rresponding probability factor is them and not some
similar behavior in our model. The hint is that one shouldpower of p. One has to identify such pairs of indices. It is
carefully examine th&— e limit and that it may be wise to 3|0 necessary to identify the independent summation indices
rescale the coupling constant in order to get a physicallyngd to count their number. One has also to count in how

Ja Ek T(2k+1)

meaningful theory. many distinct combinations the independent indices can ap-
pear in the string. All this may seem a bit confusing and is
B. Diagrammatic representation best explained with an example.

Consider the second order term in E§), n=2. One

In this section we will introduce diagrams representin ; - ;
J P gdeals with the strings that have the following structure

terms in the perturbative expansion of E8). To avoid mis-
understanding let us stress from the outset that the diagrams
introduced in this section aneot to be identified with the
graphs belonging to the statistical ensemble we are workin .

with. These diagrams are just a tool helping to catalogut.gvhen one sums over indices there appiirterms where

contributions to the partition function. We start by settingthet indicesabc:(_je.fare all distinct. Thgn, a!l thg Six ind_ex
S(M)=gTr(M3). pairs are also distinct and the probability of individual strings

Let us expand in Eq3) the factoreS is p8. We illustrate this situation by drawing two triangles
‘ ' (because there are two tragdkat are nonoverlapping, like

MabM bcM caMdeMefod- (12)

_ g" . in Fig. 1(d). The corresponding contribution to the perturba-
Z:Zo; ArT(M) Der- (9 tion series is
, . 2
Here Z, is the partition function in the EdeRmyl en- fig 1d_)g_|p6N§_
semble of random graphs and the subscript ER-in ) 2!
indicates that the average is calculated in this ensemble.
Sincezo does not depend on our dynamica| Couprg]'g is Another pOSSlblllty is that the indicese f are identical to
for us an irrelevant normalization constant. abc but appear in a different order. For each choiceabt

The problem now is to calculate the averages appearing iffiere are six such possibilities and there N*EG?UCh choices.
the sum in Eq(9). We use a method largely inspired by Ref. The probability of the string taking value 1 . We illus-

[12], adopting also some of their notations, like trate this situation by drawing two overlapping triangles, as
in Fig. 1(a). Remember, that there are six manners of putting
NE=NI/(N=k)!, (100  one triangle on top of another. Hence
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A > A AA

(a) (b) ©) @
FIG. 2. Diagrams representing
(e) @ (g) (B) 0O(g®) contributions to the parti-
M %@i i ? ﬁ ﬁ ﬁ tion function.
@) () (k) 0}
(m) (n) (o) (»)
. 9° - Using the diagrams one can actually forget about indices.
fig la— >19P°N=. It is sufficient to construct the diagrams of oraeby adding

one triangle to the diagrams of order-1 in all possible
Still another possibility is that two and only two indices are Manners. One has to multiply the number of arrangements

equal. They necessarily belong to two distinct traces. Thuactor in the target diagram of ordar-1 by the number of

three possible choices. Let us take one of them,asahen  factors should be added when a given diagram of andzzm
there are three possible structures for the second trace in thg constructed from several diagrams of order1. We
product:M oM oM s, MeaMaiMie, andMgM M 4.. No-  F€Peat again the rules: free triangle, factor 1; triangle at-
tice thate andf are dummy indices. We illustrate this situa- {@ched to one vertex, factor 3; triangle attached to a pair of
tion by drawing two triangles with one common vertex. Re-Vertices, factor 6; triangle attached to three vertices, factor 6.
member that there are three manners of attaching a triangle The general structure of the perturbation series is

to a vertex of another triangle, like in Fig(c). On the whole

there are X3=9 arrangements of the five independent in- ~ g" K
dices and six distinct index pairs. Thus leo:zn: nr Ek: N‘Em: WiRp™. (13
g2
fig 1c— §9p6N5. The summation ovek goes from 3 to &. The powemm is

always<k and m=k corresponds to diagrams where there

Finally, two indices amongef can be identical to two indi- @ré one or several groups of triangles lying one on top of
ces amongabc. There are three choices, let us takb. another. Clearly, these are the only diagrams that survive in

Then there are six possible structures for the second trace fe limit N— oo

the product: MapMpeMea, MpaMaeMep, MaeM ebl\./I ba»

MeaMapMpe, MpeMeaMap, and MggMpaM ze. We illus- C. Counting diagrams
trate this situation by drawing two triangles with one com-

mon edge, like in Fig. (b). Remember that attaching a tri- hs leadi ) i | | itis th
angle to two vertices can be done is six manners. There aftS 'eading to a given diagram topology. In a sense it s the

3X6=18 arrangements of the four independent indices an&]u_mb_er of diégfams of that topology. We are able to d_eter-
five distinct pairs: mine it recursively, step by step, but we are unable to give a

general formula for it. It is relatively easy to follow the evo-
g2 lution of the number of triangle vertices during the recursive
fig 1b— 518p5N3. process, it is much more tedious to keep track of the number
’ of triangle edge$13]. Thus, one can write a recursion equa-
tion for the sum

The quantityW(") appearing in Eq(13) is the number of

The game can be extended to higher ordealthough the
number of diagrams increases very fast. The third order dia-

grams are listed in Fig. 2. The general rule is that the power wm=> wm (14)

of p equals the number of triangle edges, the number of m

triangle vertices appears as the underlined powét and, in

the nth order, there is a factag"/n!. The determination of that is, for the total number of diagrams of orderwith k

the number of independent index arrangements is rather térangle vertices. This recursion relation, in essence, summa-
dious. The best way is to proceed recursively. rizes the rules listed in the preceding section:
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TABLE 1. Contributions to the partition function corresponding flecting the nonperturbative transition to Strauss’s phase. As
to the diagrams of Fig. 2; the common factp¥3! is omitted. we will show this is indeed the case. Define the polynomial
function

36N3pd  (b) 324N%p° 216N4p8  (d) 162N2pb

(9 648N’ () 108N’ (g0 324N%p® (h) 18NEp° Multiplying both sides of Eq(15) by y* 2 and summing
over k one obtains the following differential equation:

()  324N%p% (j) 324NEp® (k) 218NSp° (1) 162NIp® W L(y) =y3(a,+1)3W"(y). (17)
The solution is

(m  27NIp® (n) 54NZp® (o) 27N&p® (p) 1N W(”)(y)z[y3(ay+1)3]”><l, (18)

which can also be rewritten as
W D= k(k—1)(k—2)W +3(k—1)(k—2)W™, +3(k W (y)=e Y[y357]"xev. (19)

—2)WD, + W, (19 Let us assume for a moment that™(y) grows withn less
rapidly than @!)“, with some fixedx, uniformly iny. It is

The coefficients result from elementary combinatorics. The[hen meaningful to introduce a generating function

initial condition is W(1)=6k3. The first two iterations are
listed below. One can check that the numbers match those

given in Figs. 1 and 2, provided the weights of diagrams with W(x,y)= >, W (y)x"/(n!)~. (20
the same number of vertices are summed. "
n=2. This function has a formal expansion
2)_ 1)_
wWi=ewsi=e, Z=e WXy 7)Y, (21
2) (1) —
W= 18061 =18, where
W(52):9VV§>,1):91 2 N
W(z)= . (22)
W@ =w=1. no(nh)~
n=3. Developinge’ in a power series we have
W =6wW) =36, xk(k—1)(k—2)]y*
3 3 76 WLXK( kl)( )1y . (23
K !

W)= 24w + 18W) =540,

To check the convergence of this sum we need the
asymptotic behavior of a function/(z). Examples of such
functions for integerk=0,1,2 are well known, being a
simple exponentiat?, the Bessel functioriy(2+z), or the
generalized hypergeometric functiGsee Ref[14]) (F,(z),
respectively. For arbitrarg one has

WE) = 6OWE)+ 36WeD + 9W) = 1242,
W= 12002+ 60WD+ 120+ W) = 882,
W) = 90WR) + 15W2) + W2 = 243,
W = 18w+ W =27,

3)_ 2)_
W =w@=1.

W(z)~Le"zl/K(l+ ) (24)
Z( k—1)/2k

One can easily see that the numbers given above agree wittith somex-dependent constai@, . It is obvious that ifx

those presented in Table I. For example, the multiplicity of<3 the serieq23) is meaningful only wherx=0. For «

the diagramgb) and(c) is, respectively, 324 and 216, which =3 it becomes convergent for arbitraryandx. We conclude

gives togethem =540 as expected in the third order for that W™ grows faster thanr(!)3~ ¢, but slower than rf!)3

the sum of diagrams occupyirig=4 vertices. for arbitrary smalle. Such an explosive behavior of the num-
We can also estimate the number of diagraii® in the  ber of perturbation theory diagrams is a signal that nonper-

large order of the expansion, that is, for-c. As argued, turbative phenomena are present. Indeed, it means that the

this number is expected to grow faster than a factorial, recoefficients of high powers aj andN ™! are increasing dra-
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<[>~~~ " T T wheren;>n,>- - -n, and the sum is over all the partitioRs
10°F - of n: nym;+n,my+---+nmg=n. It turns out that the
numbersz{" can be calculated recursively:

Z(kn+1):sz<n)+z(kn—)l' k=1,2,...n+1 (28)

with the initial conditionz{®)=1 andz{”=0 for k outside of
the closed interval1,n]. The meaning of the equation is as

follows. If one adds a new triangle to a configuration with
10 " i 3 3 7 G S triangles, this triangle can be put at either of thexisting

positions or at a new position. Hence, all configurations with

FIG. 3. The average number of triangléE) vs the coupling N+1 triangles located ak positions can be obtained from
constantG=6g. The average degree is setde=4 and the simu- configurations withn triangles atk positions, by placing a
lation is performed for the number of nodlis=2*! (squarey 2'*  new triangle at one of thk old positions, or from configu-
(circles, and 2° (triangles. The arrows indicate the position of the rations withn triangles at k— 1) positions by placing a new
transition pointG=G,,;. The continuous line represents the ana-triangle at a new position. The first few terms resulting from
lytic result(T)=(a°/6)expG). this recursion relation are

2 — 1
matically with the order of perturbation theory: what was Z®(y)=14",

assumed to be just a perturbation is in fact h{ifg. ZO(y) =141 4172,

D. Summation of leading diagrams ZO(y)=19*+3y%+ 155,

We are interested in the limiN—o with pN=«
=const. The structure of the perturbation expansion is given
by Eq.(13). As already mentioned, in general, the number of
triangle edgeg$denotedm in Eq. (13)] is larger than or equal
to the number of triangle verticggdenotedk in Eq. (13)]. In
the limit under consideration, only those diagrams contribute

o the leading\-independent term for which the number of The recursion relation can be converted into a partial differ-

triangle edges is equal to the number of triangle vertices, .. . o .
One can easily see that in these diagrams the triangles ca(i’\rqtIaI equation forZ(G, y). Multiplying both sides of the

. k_l . .
overlap, but otherwise do not touch. In the expansiog up €quation byy™ " and summing ovek one finds

Z(4)(7)= lyl-i- 7'yz+6y3+ y4,
ZO)(y)=1y*+15y%+25y°+ 10y*+ »°,

ZO®)(y) =191+ 31y%+90y%+ 65y*+ 15y°+ 55,

to the third order, the following diagrams belong to this 1 P
class: a single triangle in the first order, diagrams in Figs. —z = 7zM 4 z(n) (29
1(a,d in the second, and those in Figgad,p in the third. Y dy
Using the previously found results we have up to the thir%here
order,
n
G G? G* _ k
Z(G,y) =1+ vt 5r (v ¥+ gy (v 4392+ ¥+ Z(n)(”_k; A0~ (30
(25 . . ) .
Now, multiplying both sides byz"/n! and summing oven
where the convenient notatid®=6g, y=a>/6 has been in- one obtains
troduced. In general, one can write this expansion as follows: P P
£Z=ya—yz+ vZ, (32
0 G” o n n ;
Z(G,7)=1+nzl Fz(n)(Y):1+,§1 n kzl Z K whereZ is given by Eq.(26). An even simpler equation is
(26) satisfied byF=1InZ:
J J
The coefficientsz{" can be interpreted as the number of all £F= Va—yFJr Y- (32)

diagrams which consist af triangles located ak isolated
positions, with possible multioccupation of a position. Hencepne easily checks that the general solution is

n! F(7,.G)=f(ve® ~7, (33
4= -

B (ng)™(ny! )™ - (i) ™mytmy! - my! wheref is an arbitrary differentiable function. It results, how-
(27 ever, from Eq.26) thatF(v,0)=0. Hence
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F(y,G)=InZ(y,G)=y(e®—1). (34 T
. . - " <T>
This result is not surprising for a practitioner of quantum ]
field theory. Indeed, 1@(vy,G) should equal the sum of con- 10
tributions of connected diagrams. The only connected dia-
grams, in the largd&\ limit, are those where triangles are all 107845 3
put on top of each other and according to our rules the dia-

gram ofnth order yields just ¢"/n!) p36"~ N2~ yG"/n!. 10
Notice, that the same resy84) is obtained assuming that
in the Erds-Renyi model the number of triangles has a Pois-

son distribution with averagey. Indeed, the average of 10 1 2 3 4 g3
exp@GT) is L
FIG. 4. As in Fig. 3(T) vs G, atN=2, but for three values of

* ,yT the average degree=2 (circles, 4 (squarey and 8(triangles.

> e 7eST=exg y(e®-1)]. (35)

=0 T! T : . .

rithmic scaling of G, but as we will see in a moment the
The average number of triangles is critical Go seems to lie below 1.
J
(T)= £|n Z= yeC. (36) Il. NUMERICAL SIMULATIONS

We have shown in the preceding section that at fihite
It is important to note that in th&l—oc limit the average the perturbative series has a behavior which signals the pres-
degree of a graph node becomes independe@tarid is just ence of a nonperturbative phenomenon. The similarity of our
equal toa, like in pure Erds-Renyi theory. This can be problem with the example exhibited in the first subsection
easily seen in our formalism. Add to the action a source ternsuggests an educated guess: there is a barrier separating the
nTr(PM), whereP is the matrixP;; = 6j;, so that Tre M) perturbative phase from a pathological but stable configura-
is the degree of the graph node with label 1. In our diagramtion; the nonperturbative phenomenon in question is the roll-
matics »Tr(PM) produces a line instead of a triangle. But ing of the system over the barrier towards this stable con-
only one end of this line has a running index, the other endiguration. The barrier must become unpenetrable inNhe
has index 1. The diagram of the lowest ordemjiiis just this ~ —oo limit, because in this limit the perturbation series be-
line and gives the contributiompN= n«a. All corrections comes well behaved, actually summable, whatever is the
due to the interactiogTr(M?3) yield terms proportional to  coupling. We will confirm this guess with the help of numeri-
some inverse powers &, because there is no way to put a cal simulations.
triangle on a line. For example, the diagram of oragy, In constructing an algorithm manipulating adjacency ma-
where one has one triangle and one line on top of one of itfrices it is most important to take into account the sparse
edges gives gp°N2~37ga®/N (we haveNZ and notN2  nature of these matrices. Only the positions &f éhatrix
because one of the triangle edges has the fixed labehl elements carry a relevant information. This makes it possible
conclusion, the only connected diagram of ord®fz) is  to reduce the amount of computer memory, needed to store
independent of), as is, to this order the free energynThe  an adjacency matrix, fronO(N?) in the naive coding to
average degree is just the derivative,7gt0, of the free O(N) in the linear coding. In effect, we simulate systems
energy and equals. One can extend this argument to higher with the number of nodes of order 4,0.e., three orders of
order moments of the degree distribution. magnitude larger than those simulated by StrdQ@ssin the
Using the results of this section we can propose a rouglpresent work we use the algorithm introduced in Refs.
estimate of the expected region where nonperturbative phy$17,18 by straightforwardly upgrading it so as to include the
ics sets in. Withp=a/N andN large the summand in E)  term in the action proportional to the number of triangles.
can be rewritten as In the first numerical experiment we set2L/N=4 and
we 1gnealssure thezwaverage number of triangl@& for N
=2+, 2*°, and 2°. The couplingG is changed in small
exp{ In;(— L+GOT)]' (37) steps until the system makes a transition to Strauss’s phase.
The results are shown in Fig. 3. The continuous line corre-
We have rescaled the coupling by Mi§&), so that this large sponds to Eq(36). It is remarkable that the points follow this
factor multiplies now both terms in the action. We expectline. The error bars are smaller than the symbol size. The
that the perturbation series breaks down when the fluctuaransition points are indicated by an arrow. A closer exami-
tions of the two terms in the action become comparable. Theation of the data shows that near the transition the points
number of links is~N and we expect(SL)?)~N. In the  start to deviate from the line and lie systematically above it.
large N limit the fluctuation of T is given by the second In the next experiment we shit=2%and measuréT) for
derivative of the free energy and equal§(sT)?) a=2, 4, and 8. The couplin® again varies up to the tran-
= v exp(G)=yN®. The two fluctuations become comparable sition point. The result is shown in Fig. 4. The lines corre-
when Gy~1. The numerical calculations confirm the loga- spond to(T)=(a/6)exp@G). The agreement is remarkable.
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We have also measured the local clustering mea€yras
defined in Ref[16]:

oL (39)
L=

whereT; is the number of triangles touching the verfeand
L; is the number of links emerging from it. We s€{=0
when'L; is zero or 1. A global clustering coefficiei@ is
obtained by averaging over vertices. In Fig. 5 we pdC) %
versusG. It is seen thatN(C)=o(a)exp@G), with o(a)

— g_(l—,(l-.#a)eé(pl(— a).)’ .Wh'Ch IS thﬁ vallclue 0ﬁ\|<§:.?f n FIG. 6. The transition from the perturbative to Strauss’s phase
Erdos-Renyi model. _u Is Interesting that for very ditferent ..o atG=G,,;. The figure shows hows,,; depends on the
values ofa the transition occurs at roughly the same value Ofsystem sizeN, for a=2 (circles, 4 (squares and 8 (triangles.

the clustering coefficient. This is presumably not a numericajqtice the logarithmic growth of the curves.

accident, but we have no explanation to offer.

In Fig. 6 we show the variation of the transition pof@t  in the smooth phase insensitive to the value of the coupling
=Ggyt With the system sizé\. In our experiments the cou- G. We show the distribution all=2048 anda=2 for G
pling G was always changed bG=0.1. Thus, in the figure =0 and for a large value d®, i.e., G=3.0, close taG,;.
we have associated an error 0.1 with the data points. Here Bhe distributions are almost identical and correspond to the
comment is in order: After having changésl we always Poisson distribution with average equal de=2 (the line.

made 1000 thermalization sweeps, then we carried outhis has been repeated fbr=2048 anda=4, where we
20000 sweeps, performing measures every ten sweeps. It igeasured aG=0 andG=2.3.
important to remember that the number of sweeps was al-

x10'  2x10t 3><104N4><104

ways the same. Indeed, fitite N the system will sooner or IV. DISCUSSION, SUMMARY, AND CONCLUSION

later roll over the barrier, it is sufficient to wait long enough.

The transition poinG=G,, is well defined when one de- A. Possible generalizations

cides to fix the waiting time. Actually, we are more interested  yp to now we assumed that the interaction has a simple

by the scaling oG, with N than by its exact value. form S(M)=gTr(M%). The question which immediately
The curves in Fig. 6 are comes to mind is what happens to the network transitivity

when the action is more complicated? Assume 8{&1) has

Cour=0.75INN=2.4 for a=2, (39 the polynomial form,S(M)=3,-59,Tr(M"), with g;=g.

_ _ _ Our diagrammatic rules can easily be extended to include
Cou=0.70INN=2.9 for a=4, (40 this case. Tri1") is represented by a polygon withsides.
Gou=0.60INN—2.7 for a=8. (41) However, the polygon can be folded, the same line segment

being covered several times. In particular, when4, a
It is very interesting, although not really surprisitepe Sec. Polygon can be folded so that some of its edges form a tri-
IID), that G,y scales like IlN. This means that setting ~ angle. . _ . o
=G,In N one obtains a model with the clustering coefficient ~ The calculation of leading diagrams given in Sec. 1D can
scaling nontrivially,C~N® 1, be generalized to interactions involving odd powershf

Figure 7 illustrates the fact that the degree distribution is

Pn ”é T I T T T T T

0.2

G 5 FIG. 7. We compare the degree distribution calculated at two
values of the coupling consta@®. The number of nodes is set to
FIG. 5. The scaled clustering coefficieN{C) vs G at N=214 N=2048. At =2 the calculation is performed settitg=0 (tri-
and fora=2 (circles, 4 (squarel and 8(triangles. The line rep-  angles upand 3.0(circles. At «=4 the calculation corresponds to
resents the expected behavi¢fC)exp(G), where the proportion- G=0 (squaresand G=2.3 (triangles dowi The continuous lines
ality coefficient is chosen so as to get the value expected insErdo represent Poisson distributions with averages equal to 2 and 4,
Renyi model atG=0. respectively.

0o~ 2 3 4
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One can limit oneself to connected diagrams, those contribfirst discovered long ago by Strau€d, who did not notice,
uting to the free energy. In thd— < limit the contribution  however, that it is separated from a smooth phase by a bar-
of a diagram is proportional thl to a power equal tonum-  rier which becomes impenetrable at lafgeWe propose to

ber of verticey— (number of edges(becausgp=a/N). We  consider this smooth phase as the physical one.

are interested in diagrams which overlap with a triangle. In  We show that for large enoudt and in a range of values
this casgnumber of vertices- (number of edges=0. In all  of the coupling constar® the smooth phase can be consid-
other cases this quantity is negative and the diagram does neted, for all practical purposes, as stable. In this randge iof
contribute in the limit. It is easy to see that diagrams surviv-is meaningful to neglect the nonperturbative physics and to
ing in the N—cc limit are those where triangles and folded limit oneself to leading diagram@hose obtained settiniy
polygons are put on top of each other. =»). We are able to sum all these diagrams up, obtaining

The situation is more complicated for even powerdvbf  simple analytic expressions for the free energy and for the
The leading diagrams look like branched polymers, withaverage number of triangles. We also show analytically that
(number of vertices= (number of edges-1, and their con- in this regime the degree distribution is insensitive to the
tribution diverges likeN. In order to avoid an unwanted value of the couplings.
renormalization of the quadratic term in the action one hasto A heuristic argument, confirmed by numerical simula-
subtract from Tr1?*) a counterterm~Tr(M?) with an ap-  tions, indicates that the transition poi&t=G,,, where the
propriate coefficient in front. Then the calculation is like for system jumps to the Strauss’s phase, scales Miike In N.
the odd power case. Hence, the physical coupling is not so mu@lbut ratherG,

We have not pushed this calculation very far. As far as wejefined by the equatio® = GIn N. Our simulations indicate
can see one expects a certain degree of universality: th@at at the transition poir,=0.6 to 0.75, depending on the
higher powers oM should not change the qualitative picture average degree, but this result should not be regarded as
very much, although they may be important for phenomenolyefinitive. Anyhow, the clustering coefficient scales nontrivi-
ogy, to fit the data. A comprehensive study of these morgy|y, like C~NS~! and is larger by one to two orders of
general interactions is certainly worth being done. This ismagnitude than in the unperturbed model.
however, beyond the scope of the present paper. It appears that the analytic treatment can be extended to

It is not quite clear what is the best way of extending themare complicated, but polynomial actions. In the present
theory of this paper so as to obtain an arbitrary degree disstate of affairs the extension of our approach to more realis-

tribution. The field theoretical methods extensively used ingjc for example, scale-free models can only be done numeri-
this paper usually fail when the action becomes nonanalyticca”y.

The simplest, although perhaps not the most elegant, exten-
sion consists in using instead of the Esd@eyi model, a
general model with uncorrelated nodgks] as the zeroth
order approximation. Preliminary numerical results look en-  Clustering is a rather striking trait of many observed net-
couraging, although it is clear that much has to be done invorks. The local treelike structure characterizing most static
order to get a fully satisfactory phenomenology. We hope tdnodels is clearly nonrealistic. We have argued elsewhere that

C. Conclusion

return to this problem elsewhere. static models are an important ingredient of network theory.
Thus, we believe that it is important to be able to construct
B. Summary static models with nontrivial clustering. There was some

) ) ) _confusion concerning the feasibility of such an enterprise.
Let us now summarize what has been achieved in thigye nope to have dissipated it. For the sake of clarity we have
work. In most of this paper we have discussed a model ofocysed our attention on a model where much can be done
random graphs where the classical Edmyi theory is  gnajytically. It is a specific matrix model, where matrices are
generalized by the introduction into the action of an interaCyandom, but their elements take values 0 and 1 only. In the
tion term GBYT(M%)=GT, M being theNX N adjacency  zeroth order approximation it is equivalent to the classical
matrix and T the number of triangles, respectively. This grqos-Renyi model of graphs. Nontrivial clustering is gener-
model is our test model. It is a matrix mo.del, but of a Spec'f%lated by an appropriate interaction. A comprehensive phe-
kind, because the dynamical variable is a random matriyomenologically oriented study is beyond the scope of this
whose elements equal either 0 or 1. paper and remains to be carried out. After this manuscript

Inspired by the ana!ogy with more co_nventional _matrix was completed we learned about REf9], which contains
models we develop a diagrammatic technique, enabling us tgyme overlapping material.

calculate the perturbation series analytically. We count the
diagrams and show that, at finil¢ their number grows so
rapidly that the perturbation series becomes pathological.
This also happens in conventional matrix models and, as is This work was partially supported by the EC IHP Grant
well known, indicates the presence of a nonperturbative pheNo. HPRN-CT-1999-000161, by Polish State Committee for
nomenon. The nature of this phenomenon is identifiedScientific ResearckKBN) Grant Nos. 2P03B 0822&003-
through numerical simulations. There is a “potential barrier” 2006 and 2P03B 096222002-2004, and by EU IST Center
and the system can roll over it and fall into a pathologicalof Excellence “COPIRA.” Laboratoire de Physique Tdre
phase, where all triangles form a unique clan. This phase wague is UniteMixte du CNRS UMR 8627.
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