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Network transitivity and matrix models
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This paper is a step towards a systematic theory of the transitivity~clustering! phenomenon in random
networks. A static framework is used, with adjacency matrix playing the role of the dynamical variable. Hence,
our model is a matrix model, where matrices are random, but their elements take values 0 and 1 only.
Confusion present in some papers where earlier attempts to incorporate transitivity in a similar framework have
been made is hopefully dissipated. Inspired by more conventional matrix models, analytic techniques to
develop a static model with nontrivial clustering are introduced. Computer simulations complete the analytic
discussion.
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I. INTRODUCTION

Network model builders are currently adopting one of t
two complementary approaches. Either a network is c
structed step by step, by adding successive nodes and l
or else, what is constructed is a static statistical ensemb
networks. Each of these two approaches has its merits
shortcomings. Evolving network models shed light on t
growth dynamics, while static ensembles are more appro
ate for the study of structural traits. The classical mode
Erdös and Re´nyi @1# has been generalized so as to incorp
rate arbitrary degree distributions and even some corr
tions, but a serious shortcoming of the static models p
posed so far is that they do not capture the common fea
of most real networks: neighbors of a randomly chosen n
are directly linked to each other much more frequently th
by chance, so that many short loops appear. The netw
tend to have locally a tree structure~see Refs.@2–4#!. And,
as pointed out in Ref.@4#, ‘‘for general networks we cur-
rently have no idea how to incorporate transitivity into ra
dom graph models.’’ In this paper we fill this gap, at lea
partially. The attention of the reader should be called to
very recent Refs.@5–7#, where the clustering problem is als
addressed, but following very different avenues.

Graphs are a mathematical representation of netwo
For definiteness we consider in this paper undirected gra
only. Let us denote byN the number of nodes in a graph an
by M5$Mi j %,i , j 51,2, . . . ,N the symmetric incidence ma
trix, with Mii 50 on the diagonal andMi j 51 or 0 depending
on whether the nodes labeledi and j are connected or not
Whole information about a graph is encoded in its adjace
matrix. A general random graph model can be defined
introducing the partition function~see, for example, Ref
@8#!:

Z5(
M

eS(M )d„Tr~M2!22L…, ~1!

whereL is the number of links andS(M ) is a function which
we will call the action. The sum is over all possible ad
cency matricesM. The simplest choice isS(M )50. The
corresponding graphs are those of the classical theor
Erdös and Re´nyi @1#: the value of the ratioL/N determines a
variant of the model.
1063-651X/2004/69~2!/026106~10!/$22.50 69 0261
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Probably the simplest extension of the classical the
consists in settingS(M )5gTr(M3), directly proportional to
the number of triangles. This has already been attemp
many years ago by Strauss@9#. His results are summarized i
the recent review@4#: ‘‘There is however, one unfortunat
pathology . . . . If, for example, we include a term in th
Hamiltonian that is linear in the number of triangles in t
graph, with an accompanying positive temperature favor
these triangles, then the model has the tendency to conde
forming regions of the graph that are essentially compl
cliques—subset of vertices within which every possible li
exists . . . Networks in the real world however do not see
to have this sort of clumpy transitivity.’’

It appears to us that this negative conclusion, which fa
fully reflects the content of Ref.@9#, is not quite right. There
is nothing wrong in Strauss’s work. However, it is very i
complete and due to this incompleteness involuntarily m
leading. One of the aims of our paper is to give a fresh a
comprehensive discussion of Strauss’s model.

The essence of Strauss’s argument is as follows: assum
that the ratioL/N is kept constant, one can easily convin
oneself that there exist pathological configurations for wh
Tr(M3)}N3/2. The contribution of such a configuration t
the partition function is explosive in the largeN limit, since
it cannot be tamed by the entropy factor falling rough
speaking like the inverse of the number of graphs, i.e., l
exp(2const3N ln N). Thus, however small the couplingg is,
the only stable states of the system are the pathological o
provided the system is large enough.

As we will show later on, the pathological crumple
states—the Strauss phase—are separated from a sm
phase by a barrier that grows with increasingN. If the system
is prepared in the smooth phase, it has a very tiny probab
to roll out over the barrier to the Strauss phase. This pr
ability tends rapidly to zero in the thermodynamic lim
Strauss has missed this point, because the systems he
lated were too small to signal the relative stability of t
smooth phase. Now, for all practical purposes one can w
in the smooth phase, ignoring the instability. This is what o
does on many occasions in physics, in particular in the c
text of matrix models, where the instability also goes aw
when the matrix size tends to infinity.
©2004 The American Physical Society06-1
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We have mentioned matrix models on purpose. T
theory of random matrices is an important branch of stati
cal physics, with applications ranging from nuclear phys
to string theory. Some of the techniques developed in
theory can be adapted to a study of the model defined by
~1!. This is also a matrix model, albeit dealing with rath
special matrices: in standard matrix models the matrix e
ments are continuous random variables.

The form~1! of the partition function turns out to be ver
convenient for numerical simulations. In analytical calcu
tions it will be convenient to use a slightly different formu
lation of the model, getting rid of thed function and allow-
ing small fluctuations of the number of linksL. The partition
function Z will be, up to a factor, the average of exp(S) in
Erdös-Rényi theory. We first assume that a link is occupi
with probabilityp. Hence, for givenN andL the Erdös-Rényi
weight is

pL~12p!N(N21)/22L5~12p!N(N21)/2S 1

p
21D 2L

. ~2!

This primary weight is further multiplied by exp(S). Inserting
Eq. ~2!, integrating overL, and neglecting an irrelevant fac
tor, we obtain the modified partition function

Z̃5(
M

expF2
1

2
lnS 1

p
21DTr~M2!1S~M !G . ~3!

In short, we have traded thed function for a Gaussian.
In most of this paper we setS(M )5gTr(M3), as in Ref.

@9#. Thus, formally and up to a rescaling of the dynamic
variable the model looks like the much studied matrix mo

Zmatrix5E dM expS 2
1

2
Tr~M2!1gTr~M3! D , ~4!

where one integrates over all possible symmetricN3N ma-
trices. The difference is in the integration measure, which
discrete in Eq.~3! and continuous,

dM5)
i< j

dMi j , ~5!

in Eq. ~4!. This difference is crucial, of course, but we wou
rather like to insist on the similarities between the two mo
els. In any case, the example of the matrix model is for u
guide in our study.

The plan of the paper is as follows. In Sec. II we deve
exp(S) in powers ofS and discuss the features of the pertu
bation series obtained by integrating term by term. In S
II A we recall how the behavior of the perturbation seri
reflects the existence of an instability of the theory, by co
sidering two examples. In Sec. II B we introduce a help
diagrammatic representation of the perturbative contributi
to the partition function. These diagrams are counted in S
II C. It is argued that at finiteN the perturbation series i
pathological, indicating that nonperturbative phenomena
in action. However, keeping only the terms that are nonv
ishing in the limitN→` one gets, like in the matrix mode
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~4!, a convergent series. This series is summed in Sec.
We obtain a simple analytic formula for the average num
of triangles. We also show that the introduction of the int
action gTr(M3) leaves the degree distribution unmodifie
The nonperturbative dynamics is studied in detail in Sec.
using the Monte Carlo technique of numerical simulation.
a range of model parameters we find a remarkable agreem
between the data and the perturbative predictions, show
that the nonperturbative phenomena are negligible in
range. However, at large enough coupling strength the
turbation theory breaks down, as expected. The transi
point has an interesting scaling withN. This enables us to
define the model so as to get a nontrivial behavior of
clustering coefficient. In Sec. IV we discuss possible gen
alizations. This section contains also a summary of this w
and a conclusion.

II. PERTURBATION SERIES

A. An analogy

Before entering into the main discussion of our proble
let us consider an elementary example, to help those rea
who are not conversant with field theoretic arguments:

Consider the following integral:

I 5A b

2pE dxeb(2x2/21gx3/32ex4), ~6!

where e is infinitesimal and has been introduced only
order to satisfy purists:I can be regarded as the partitio
function of a particle subject to the combined action of
potential and of a heat bath. Formally, the integrand
sembles the summand in Eq.~3!, except that the integration
variable is here just a number.

Consider a random walk in the potential given by t
exponent in Eq.~6!. Assume that in some initial moment th
particle is located atx50. This is a metastable state. Th
particle eventually rolls over the barrier and reaches the d
minimum of the free energy atx'g/4e. As is well known,
the lifetimet of the metastable state is given by the Arrhe
ius formula@10#,

t'eb/6g2
. ~7!

The decay of the metastable configuration is a nonpertu
tive phenomenon. The escape time has an essential sing
ity as a function of the couplingg. Of course, this nonper
turbative phenomenon only occurs at nonzero temperat
Whenb5` the particle stays forever in its initial position
Notice that the transition is more a crossover than a genu
phase transition. It occurs when the exponent in Eq.~7! is of
order unity, but the value ofg where the transition occur
may slightly depend on how the random walk is performe

In more complicated models the Arrhenius formula is n
so readily derived. But nonperturbative dynamics shows
if present, in the structure of the perturbation series in
coupling constant. Let us expand the exponential in Eq.~6!
with respect to terms other than the quadratic one:
6-2
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FIG. 1. Diagrams representingO(g2) contri-
butions to the partition function.
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9b D k

@11O~e!#. ~8!

It is evident that the series coefficients grow factorially a
that the series has zero radius of convergence. This is a c
acteristic signal. We will find a similar behavior, at finiteN,
in the model defined by Eq.~3!.

To conclude this section let us mention what happ
when the partition function instead of being a Riemann in
gral, like in Eq. ~6!, is a matrix integral, like in Eq.~4!: A
perturbation expansion can again be defined and the term
the expansion can be given a diagrammatic representatio
clever manner of cataloging these diagrams has been de
by ’t Hooft @11#. One first rescalesM→ANM,g→g/AN,e
→e/N. One then observes that these diagrams can be dr
on a two-dimensional surface. Such a surface is alway
sphere with a number of handles. Classes of diagrams
characterized by the numberh of these handles and the co
tributions of all diagrams belonging to the same class h
the sameN dependence:N222h. Summing over allh one gets
a badly divergent series. However, in the limitN→` the
spherical topology (h50) dominates and the correspondin
series has a nonzero radius of convergence. We will se
similar behavior in our model. The hint is that one shou
carefully examine theN→` limit and that it may be wise to
rescale the coupling constant in order to get a physic
meaningful theory.

B. Diagrammatic representation

In this section we will introduce diagrams representi
terms in the perturbative expansion of Eq.~3!. To avoid mis-
understanding let us stress from the outset that the diagr
introduced in this section arenot to be identified with the
graphs belonging to the statistical ensemble we are work
with. These diagrams are just a tool helping to catalog
contributions to the partition function. We start by setti
S(M )5gTr(M3).

Let us expand in Eq.~3! the factoreS,

Z̃5Z0(
n

gn

n!
^@Tr~M3!#n&ER . ~9!

Here Z0 is the partition function in the Erdo¨s-Rényi en-
semble of random graphs and the subscript ER in^•••&ER
indicates that the average is calculated in this ensem
SinceZ0 does not depend on our dynamical couplingg it is
for us an irrelevant normalization constant.

The problem now is to calculate the averages appearin
the sum in Eq.~9!. We use a method largely inspired by Re
@12#, adopting also some of their notations, like

Nk5N!/ ~N2k!!, ~10!
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which is the number of ways to choosek amongN indices,
the different permutations of the selected indices being c
sidered as distinct. We have Tr(M3)5(abcMabMbcMca ,
which is up to the factor 3! the numberT of triangles in the
graph. We represent a matrix elementMab by a line segment.
Indicesa,b are then associated with the ends of the segm
The productMabMbcMca is represented by a triangle. Notic
that MabMbcMca is a random variable which can only tak
value 0 or 1. Since the diagonal elements ofM are by defi-
nition 0 the probability that this product equals 1 isp3.
There areN3 configurations of indices which correspond
nonvanishing contributions to the sum. Hence

^TrM3&ER5p3N3. ~11!

The power ofp is equal to the number of the sides of th
triangle and the underlined power ofN is the number of
indices one is summing over. The contribution to the pert
bation series is, of course,gp3N3.

A complication arises as one goes to higher order of
perturbation theory. As one multiplies the traces one p
duces stringsMabMbc . . . Me f where some pairs of indices
possibly interchanged likeab andba, repeat themselves re
ferring to the same element of the adjacency matrix. T
corresponding probability factor is thenp and not some
power of p. One has to identify such pairs of indices. It
also necessary to identify the independent summation ind
and to count their number. One has also to count in h
many distinct combinations the independent indices can
pear in the string. All this may seem a bit confusing and
best explained with an example.

Consider the second order term in Eq.~9!, n52. One
deals with the strings that have the following structure

MabMbcMcaMdeMe fM f d . ~12!

When one sums over indices there appearN6 terms where
the indicesabcde f are all distinct. Then, all the six inde
pairs are also distinct and the probability of individual strin
is p6. We illustrate this situation by drawing two triangle
~because there are two traces! that are nonoverlapping, like
in Fig. 1~d!. The corresponding contribution to the perturb
tion series is

fig 1d→ g2

2!
p6N6.

Another possibility is that the indicesde f are identical to
abc but appear in a different order. For each choice ofabc
there are six such possibilities and there areN3 such choices.
The probability of the string taking value 1 isp3. We illus-
trate this situation by drawing two overlapping triangles,
in Fig. 1~a!. Remember, that there are six manners of putt
one triangle on top of another. Hence
6-3
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FIG. 2. Diagrams representin
O(g3) contributions to the parti-
tion function.
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fig 1a→ g2

2!
6p3N3.

Still another possibility is that two and only two indices a
equal. They necessarily belong to two distinct traces. T
one of the indicesde f equals eithera, or b, or c: there are
three possible choices. Let us take one of them, saya. Then
there are three possible structures for the second trace in
product:MaeMe fM f a , MeaMa fM f e , andMe fM f aMae . No-
tice thate and f are dummy indices. We illustrate this situ
tion by drawing two triangles with one common vertex. R
member that there are three manners of attaching a tria
to a vertex of another triangle, like in Fig. 1~c!. On the whole
there are 33359 arrangements of the five independent
dices and six distinct index pairs. Thus

fig 1c→ g2

2!
9p6N5.

Finally, two indices amongde f can be identical to two indi-
ces amongabc. There are three choices, let us takeab.
Then there are six possible structures for the second trac
the product: MabMbeMea , MbaMaeMeb , MaeMebMba ,
MeaMabMbe , MbeMeaMab , and MebMbaMae . We illus-
trate this situation by drawing two triangles with one co
mon edge, like in Fig. 1~b!. Remember that attaching a tr
angle to two vertices can be done is six manners. There
336518 arrangements of the four independent indices
five distinct pairs:

fig 1b→ g2

2!
18p5N4.

The game can be extended to higher ordern, although the
number of diagrams increases very fast. The third order
grams are listed in Fig. 2. The general rule is that the po
of p equals the number of triangle edges, the number
triangle vertices appears as the underlined power ofN and, in
the nth order, there is a factorgn/n!. The determination of
the number of independent index arrangements is rathe
dious. The best way is to proceed recursively.
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Using the diagrams one can actually forget about indic
It is sufficient to construct the diagrams of ordern by adding
one triangle to the diagrams of ordern21 in all possible
manners. One has to multiply the number of arrangeme
factor in the target diagram of ordern21 by the number of
ways the new triangle can be attached to it. These nume
factors should be added when a given diagram of ordern can
be constructed from several diagrams of ordern21. We
repeat again the rules: free triangle, factor 1; triangle
tached to one vertex, factor 3; triangle attached to a pai
vertices, factor 6; triangle attached to three vertices, facto

The general structure of the perturbation series is

Z̃/Z05(
n

gn

n! (
k

Nk(
m

Wkm
(n)pm. ~13!

The summation overk goes from 3 to 3n. The powerm is
always<k and m5k corresponds to diagrams where the
are one or several groups of triangles lying one on top
another. Clearly, these are the only diagrams that surviv
the limit N→`.

C. Counting diagrams

The quantityWkm
(n) appearing in Eq.~13! is the number of

paths leading to a given diagram topology. In a sense it is
number of diagrams of that topology. We are able to de
mine it recursively, step by step, but we are unable to giv
general formula for it. It is relatively easy to follow the evo
lution of the number of triangle vertices during the recurs
process, it is much more tedious to keep track of the num
of triangle edges@13#. Thus, one can write a recursion equ
tion for the sum

Wk
(n)5(

m
Wkm

(n) , ~14!

that is, for the total number of diagrams of ordern, with k
triangle vertices. This recursion relation, in essence, sum
rizes the rules listed in the preceding section:
6-4
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Wk
(n11)5k~k21!~k22!Wk

(n)13~k21!~k22!Wk21
(n) 13~k

22!Wk22
(n) 1Wk23

(n) . ~15!

The coefficients result from elementary combinatorics. T
initial condition is Wk

(1)5dk3. The first two iterations are
listed below. One can check that the numbers match th
given in Figs. 1 and 2, provided the weights of diagrams w
the same number of vertices are summed.

n52.

W3
(2)56W3

(1)56,

W4
(2)518W3

(1)518,

W5
(2)59W3

(1)59,

W6
(2)5W3

(1)51.

n53.

W3
(3)56W3

(2)536,

W4
(3)524W4

(2)118W3
(2)5540,

W5
(3)560W5

(2)136W4
(2)19W3

(2)51242,

W6
(3)5120W6

(2)160W5
(2)112W4

(2)1W3
(2)5882,

W7
(3)590W6

(2)115W5
(2)1W4

(2)5243,

W8
(3)518W6

(2)1W5
(2)527,

W9
(3)5W6

(2)51.

One can easily see that the numbers given above agree
those presented in Table I. For example, the multiplicity
the diagrams~b! and~c! is, respectively, 324 and 216, whic
gives togetherW4

(3)5540 as expected in the third order fo
the sum of diagrams occupyingk54 vertices.

We can also estimate the number of diagramsW(n) in the
large order of the expansion, that is, forn→`. As argued,
this number is expected to grow faster than a factorial,

TABLE I. Contributions to the partition function correspondin
to the diagrams of Fig. 2; the common factorg3/3! is omitted.

~a! 36N3p3 ~b! 324N4p5 ~c! 216N4p6 ~d! 162N5p6

~e! 648N5p7 ~f! 108N5p7 ~g! 324N5p8 ~h! 18N6p6

~i! 324N6p8 ~j! 324N6p8 ~k! 216N6p9 ~l! 162N7p9

~m! 27N7p9 ~n! 54N7p8 ~o! 27N8p9 ~p! 1N9p9
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flecting the nonperturbative transition to Strauss’s phase
we will show this is indeed the case. Define the polynom
function

W(n)~y!5(
k

Wk
(n)yk. ~16!

Multiplying both sides of Eq.~15! by yk23 and summing
over k one obtains the following differential equation:

W(n11)~y!5y3~]y11!3W(n)~y!. ~17!

The solution is

W(n)~y!5@y3~]y11!3#n31, ~18!

which can also be rewritten as

W(n)~y!5e2y@y3]y
3#n3ey. ~19!

Let us assume for a moment thatW(n)(y) grows withn less
rapidly than (n!) k, with some fixedk, uniformly in y. It is
then meaningful to introduce a generating function

W~x,y!5(
n

W(n)~y!xn/~n! !k. ~20!

This function has a formal expansion

Z5e2yW@xy3~]y
3!3#ey, ~21!

where

W~z!5(
n

zn

~n! !k
. ~22!

Developingey in a power series we have

Z5e2y(
k

W@xk~k21!~k22!#yk

k!
. ~23!

To check the convergence of this sum we need
asymptotic behavior of a functionW(z). Examples of such
functions for integerk50,1,2 are well known, being a
simple exponentialez, the Bessel functionI 0(2Az), or the
generalized hypergeometric function~see Ref.@14#! 0F2(z),
respectively. For arbitraryk one has

W~z!;
Ck

z~k21!/2k
ekz1/k

~11••• ! ~24!

with somek-dependent constantCk . It is obvious that ifk
,3 the series~23! is meaningful only whenx50. For k
>3 it becomes convergent for arbitraryy andx. We conclude
that W(n) grows faster than (n!) 32e, but slower than (n!) 3

for arbitrary smalle. Such an explosive behavior of the num
ber of perturbation theory diagrams is a signal that nonp
turbative phenomena are present. Indeed, it means tha
coefficients of high powers ofg andN21 are increasing dra-
6-5
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matically with the order of perturbation theory: what w
assumed to be just a perturbation is in fact huge@15#.

D. Summation of leading diagrams

We are interested in the limitN→` with pN5a
5const. The structure of the perturbation expansion is gi
by Eq.~13!. As already mentioned, in general, the number
triangle edges@denotedm in Eq. ~13!# is larger than or equa
to the number of triangle vertices@denotedk in Eq. ~13!#. In
the limit under consideration, only those diagrams contrib
to the leadingN-independent term for which the number
triangle edges is equal to the number of triangle vertic
One can easily see that in these diagrams the triangles
overlap, but otherwise do not touch. In the expansion ing up
to the third order, the following diagrams belong to th
class: a single triangle in the first order, diagrams in Fi
1~a,d! in the second, and those in Figs. 3~a,h,p! in the third.
Using the previously found results we have up to the th
order,

Z~G,g!511
G

1!
g1

G2

2!
~g1g2!1

G3

3!
~g13g21g3!1•••,

~25!

where the convenient notationG56g,g5a3/6 has been in-
troduced. In general, one can write this expansion as follo

Z~G,g!511 (
n51

`
Gn

n!
Z(n)~g!511 (

n51

`
Gn

n! (
k51

n

zk
(n)gk

•••.

~26!

The coefficientszk
(n) can be interpreted as the number of

diagrams which consist ofn triangles located atk isolated
positions, with possible multioccupation of a position. Hen

zk
(n)5(

P

n!

~n1! !m1~n2! !m2
•••~nk! !mkm1!m2! •••mk!

,

~27!

FIG. 3. The average number of triangles^T& vs the coupling
constantG[6g. The average degree is set toa54 and the simu-
lation is performed for the number of nodesN5211 ~squares!, 213

~circles!, and 215 ~triangles!. The arrows indicate the position of th
transition pointG5Gout . The continuous line represents the an
lytic result ^T&5(a3/6)exp(G).
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wheren1.n2.•••nk and the sum is over all the partitionsP
of n: n1m11n2m21•••1nkmk5n. It turns out that the
numberszk

(n) can be calculated recursively:

zk
(n11)5kzk

(n)1zk21
(n) , k51,2, . . . ,n11 ~28!

with the initial conditionz1
(1)51 andzk

(n)50 for k outside of
the closed interval@1,n#. The meaning of the equation is a
follows. If one adds a new triangle to a configuration withn
triangles, this triangle can be put at either of thek existing
positions or at a new position. Hence, all configurations w
n11 triangles located atk positions can be obtained from
configurations withn triangles atk positions, by placing a
new triangle at one of thek old positions, or from configu-
rations withn triangles at (k21) positions by placing a new
triangle at a new position. The first few terms resulting fro
this recursion relation are

Z(2)~g!51g1,

Z(2)~g!51g111g2,

Z(3)~g!51g113g211g3,

Z(4)~g!51g117g216g31g4,

Z(5)~g!51g1115g2125g3110g41g5,

Z(6)~g!51g1131g2190g3165g4115g51g6.

The recursion relation can be converted into a partial diff
ential equation forZ(G,g). Multiplying both sides of the
equation bygk21 and summing overk one finds

1

g
Z(n11)5

]

]g
Z(n)1Z(n), ~29!

where

Z(n)~g!5 (
k51

n

zk
(n)gk. ~30!

Now, multiplying both sides byGn/n! and summing overn
one obtains

]

]G
Z5g

]

]g
Z1gZ, ~31!

whereZ is given by Eq.~26!. An even simpler equation is
satisfied byF5 ln Z:

]

]G
F5g

]

]g
F1g. ~32!

One easily checks that the general solution is

F~g,G!5 f ~geG!2g, ~33!

wheref is an arbitrary differentiable function. It results, how
ever, from Eq.~26! that F(g,0)50. Hence

-
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NETWORK TRANSITIVITY AND MATRIX MODELS PHYSICAL REVIEW E 69, 026106 ~2004!
F~g,G!5 ln Z~g,G!5g~eG21!. ~34!

This result is not surprising for a practitioner of quantu
field theory. Indeed, lnZ(g,G) should equal the sum of con
tributions of connected diagrams. The only connected d
grams, in the largeN limit, are those where triangles are a
put on top of each other and according to our rules the
gram ofnth order yields just (gn/n!) p36n21N3;gGn/n!.

Notice, that the same result~34! is obtained assuming tha
in the Erdös-Rényi model the number of triangles has a Po
son distribution with averageg. Indeed, the average o
exp(GT) is

(
T50

`
gT

T!
e2geGT5exp@g~eG21!#. ~35!

The average number of triangles is

^T&5
]

]G
ln Z5geG. ~36!

It is important to note that in theN→` limit the average
degree of a graph node becomes independent ofG and is just
equal toa, like in pure Erdo¨s-Rényi theory. This can be
easily seen in our formalism. Add to the action a source te
hTr(PM), whereP is the matrixPi j 5d i1, so that Tr(PM)
is the degree of the graph node with label 1. In our diagra
maticshTr(PM) produces a line instead of a triangle. B
only one end of this line has a running index, the other e
has index 1. The diagram of the lowest order inh is just this
line and gives the contributionhpN5ha. All corrections
due to the interactiongTr(M3) yield terms proportional to
some inverse powers ofN, because there is no way to put
triangle on a line. For example, the diagram of orderhg,
where one has one triangle and one line on top of one o
edges gives 3hgp3N2;3hga3/N ~we haveN2 and notN3

because one of the triangle edges has the fixed label 1!. In
conclusion, the only connected diagram of orderO(h) is
independent ofg, as is, to this order the free energy lnZ. The
average degree is just the derivative, ath50, of the free
energy and equalsa. One can extend this argument to high
order moments of the degree distribution.

Using the results of this section we can propose a ro
estimate of the expected region where nonperturbative p
ics sets in. Withp5a/N andN large the summand in Eq.~3!
can be rewritten as

expH ln
N

a
~2L1G0T!J . ~37!

We have rescaled the coupling by ln(N/a), so that this large
factor multiplies now both terms in the action. We expe
that the perturbation series breaks down when the fluc
tions of the two terms in the action become comparable.
number of links is;N and we expect̂ (dL)2&;N. In the
large N limit the fluctuation of T is given by the second
derivative of the free energy and equalŝ(dT)2&
5g exp(G)5gNG0. The two fluctuations become comparab
when G0'1. The numerical calculations confirm the log
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rithmic scaling ofG, but as we will see in a moment th
critical G0 seems to lie below 1.

III. NUMERICAL SIMULATIONS

We have shown in the preceding section that at finiteN
the perturbative series has a behavior which signals the p
ence of a nonperturbative phenomenon. The similarity of
problem with the example exhibited in the first subsect
suggests an educated guess: there is a barrier separatin
perturbative phase from a pathological but stable configu
tion; the nonperturbative phenomenon in question is the r
ing of the system over the barrier towards this stable c
figuration. The barrier must become unpenetrable in theN
→` limit, because in this limit the perturbation series b
comes well behaved, actually summable, whatever is
coupling. We will confirm this guess with the help of nume
cal simulations.

In constructing an algorithm manipulating adjacency m
trices it is most important to take into account the spa
nature of these matrices. Only the positions of 2L matrix
elements carry a relevant information. This makes it poss
to reduce the amount of computer memory, needed to s
an adjacency matrix, fromO(N2) in the naive coding to
O(N) in the linear coding. In effect, we simulate system
with the number of nodes of order 104, i.e., three orders of
magnitude larger than those simulated by Strauss@9#. In the
present work we use the algorithm introduced in Re
@17,18# by straightforwardly upgrading it so as to include th
term in the action proportional to the number of triangles

In the first numerical experiment we seta52L/N54 and
we measure the average number of triangles^T& for N
5211, 213, and 215. The couplingG is changed in small
steps until the system makes a transition to Strauss’s ph
The results are shown in Fig. 3. The continuous line cor
sponds to Eq.~36!. It is remarkable that the points follow thi
line. The error bars are smaller than the symbol size. T
transition points are indicated by an arrow. A closer exam
nation of the data shows that near the transition the po
start to deviate from the line and lie systematically above

In the next experiment we setN5214 and measurêT& for
a52, 4, and 8. The couplingG again varies up to the tran
sition point. The result is shown in Fig. 4. The lines corr
spond to^T&5(a/6)exp(G). The agreement is remarkabl

FIG. 4. As in Fig. 3,̂ T& vs G, atN5214, but for three values of
the average degreea52 ~circles!, 4 ~squares!, and 8 ~triangles!.
6-7
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We have also measured the local clustering measureCj as
defined in Ref.@16#:

Cj5
2Tj

L j~L j21!
, ~38!

whereTj is the number of triangles touching the vertexj, and
L j is the number of links emerging from it. We setCj50
when L j is zero or 1. A global clustering coefficientC is
obtained by averaging over vertices. In Fig. 5 we plotN^C&
versusG. It is seen thatN^C&5s(a)exp(G), with s(a)
5a„12(11a)exp(2a)…, which is the value ofN^C& in
Erdös-Rényi model. It is interesting that for very differen
values ofa the transition occurs at roughly the same value
the clustering coefficient. This is presumably not a numer
accident, but we have no explanation to offer.

In Fig. 6 we show the variation of the transition pointG
5Gout with the system sizeN. In our experiments the cou
pling G was always changed bydG50.1. Thus, in the figure
we have associated an error 0.1 with the data points. He
comment is in order: After having changedG we always
made 1000 thermalization sweeps, then we carried
20 000 sweeps, performing measures every ten sweeps.
important to remember that the number of sweeps was
ways the same. Indeed, atfinite N the system will sooner o
later roll over the barrier, it is sufficient to wait long enoug
The transition pointG5Gout is well defined when one de
cides to fix the waiting time. Actually, we are more interest
by the scaling ofGout with N than by its exact value.

The curves in Fig. 6 are

Gout50.75 lnN22.4 for a52, ~39!

Gout50.70 lnN22.9 for a54, ~40!

Gout50.60 lnN22.7 for a58. ~41!

It is very interesting, although not really surprising~see Sec.
II D !, that Gout scales like lnN. This means that settingG
5G0ln N one obtains a model with the clustering coefficie
scaling nontrivially,C;NG021.

Figure 7 illustrates the fact that the degree distribution

FIG. 5. The scaled clustering coefficientN^C& vs G at N5214

and fora52 ~circles!, 4 ~squares!, and 8~triangles!. The line rep-
resents the expected behaviorN^C&}exp(G), where the proportion-
ality coefficient is chosen so as to get the value expected in Er¨s-
Rényi model atG50.
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in the smooth phase insensitive to the value of the coup
G. We show the distribution atN52048 anda52 for G
50 and for a large value ofG, i.e., G53.0, close toGout .
The distributions are almost identical and correspond to
Poisson distribution with average equal toa52 ~the line!.
This has been repeated forN52048 anda54, where we
measured atG50 andG52.3.

IV. DISCUSSION, SUMMARY, AND CONCLUSION

A. Possible generalizations

Up to now we assumed that the interaction has a sim
form S(M )5gTr(M3). The question which immediately
comes to mind is what happens to the network transitiv
when the action is more complicated? Assume thatS(M ) has
the polynomial form,S(M )5(n>3gnTr(Mn), with g3[g.
Our diagrammatic rules can easily be extended to incl
this case. Tr(Mn) is represented by a polygon withn sides.
However, the polygon can be folded, the same line segm
being covered several times. In particular, whenn.4, a
polygon can be folded so that some of its edges form a
angle.

The calculation of leading diagrams given in Sec. II D c
be generalized to interactions involving odd powers ofM.

FIG. 6. The transition from the perturbative to Strauss’s ph
occurs atG5Gout . The figure shows howGout depends on the
system sizeN, for a52 ~circles!, 4 ~squares!, and 8 ~triangles!.
Notice the logarithmic growth of the curves.

FIG. 7. We compare the degree distribution calculated at
values of the coupling constantG. The number of nodes is set t
N52048. At a52 the calculation is performed settingG50 ~tri-
angles up! and 3.0~circles!. At a54 the calculation corresponds t
G50 ~squares! andG52.3 ~triangles down!. The continuous lines
represent Poisson distributions with averages equal to 2 an
respectively.
6-8



tri

I

s n
iv
d

ith

d
s

or

w
t

re
o
or
is

he
di
i
ti
te

n

t

th
l o

ac

is
ia
tr

rix
s
th

ca
s
h
e
r’

ca
w

bar-

d-

to

ing
the
hat
he

a-

e
d as
vi-
f

d to
ent
lis-
eri-

et-
tic
that
ry.

uct
e

se.
ave
one
re
the
cal
r-
he-
his
ript

nt
for

NETWORK TRANSITIVITY AND MATRIX MODELS PHYSICAL REVIEW E 69, 026106 ~2004!
One can limit oneself to connected diagrams, those con
uting to the free energy. In theN→` limit the contribution
of a diagram is proportional toN to a power equal to~num-
ber of vertices!2~number of edges! ~becausep5a/N). We
are interested in diagrams which overlap with a triangle.
this case~number of vertices!2~number of edges!50. In all
other cases this quantity is negative and the diagram doe
contribute in the limit. It is easy to see that diagrams surv
ing in the N→` limit are those where triangles and folde
polygons are put on top of each other.

The situation is more complicated for even powers ofM.
The leading diagrams look like branched polymers, w
~number of vertices!5~number of edges!11, and their con-
tribution diverges likeN. In order to avoid an unwante
renormalization of the quadratic term in the action one ha
subtract from Tr(M2k) a counterterm;Tr(M2) with an ap-
propriate coefficient in front. Then the calculation is like f
the odd power case.

We have not pushed this calculation very far. As far as
can see one expects a certain degree of universality:
higher powers ofM should not change the qualitative pictu
very much, although they may be important for phenomen
ogy, to fit the data. A comprehensive study of these m
general interactions is certainly worth being done. This
however, beyond the scope of the present paper.

It is not quite clear what is the best way of extending t
theory of this paper so as to obtain an arbitrary degree
tribution. The field theoretical methods extensively used
this paper usually fail when the action becomes nonanaly
The simplest, although perhaps not the most elegant, ex
sion consists in using instead of the Erdo¨s-Rényi model, a
general model with uncorrelated nodes@18# as the zeroth
order approximation. Preliminary numerical results look e
couraging, although it is clear that much has to be done
order to get a fully satisfactory phenomenology. We hope
return to this problem elsewhere.

B. Summary

Let us now summarize what has been achieved in
work. In most of this paper we have discussed a mode
random graphs where the classical Erdo¨s-Rényi theory is
generalized by the introduction into the action of an inter
tion term (G/3!)Tr(M3)5GT, M being theN3N adjacency
matrix and T the number of triangles, respectively. Th
model is our test model. It is a matrix model, but of a spec
kind, because the dynamical variable is a random ma
whose elements equal either 0 or 1.

Inspired by the analogy with more conventional mat
models we develop a diagrammatic technique, enabling u
calculate the perturbation series analytically. We count
diagrams and show that, at finiteN, their number grows so
rapidly that the perturbation series becomes pathologi
This also happens in conventional matrix models and, a
well known, indicates the presence of a nonperturbative p
nomenon. The nature of this phenomenon is identifi
through numerical simulations. There is a ‘‘potential barrie
and the system can roll over it and fall into a pathologi
phase, where all triangles form a unique clan. This phase
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first discovered long ago by Strauss@9#, who did not notice,
however, that it is separated from a smooth phase by a
rier which becomes impenetrable at largeN. We propose to
consider this smooth phase as the physical one.

We show that for large enoughN and in a range of values
of the coupling constantG the smooth phase can be consi
ered, for all practical purposes, as stable. In this range ofG it
is meaningful to neglect the nonperturbative physics and
limit oneself to leading diagrams~those obtained settingN
5`). We are able to sum all these diagrams up, obtain
simple analytic expressions for the free energy and for
average number of triangles. We also show analytically t
in this regime the degree distribution is insensitive to t
value of the couplingG.

A heuristic argument, confirmed by numerical simul
tions, indicates that the transition pointG5Gout , where the
system jumps to the Strauss’s phase, scales withN like ln N.
Hence, the physical coupling is not so muchG but ratherG0

defined by the equationG5G0ln N. Our simulations indicate
that at the transition pointG050.6 to 0.75, depending on th
average degree, but this result should not be regarde
definitive. Anyhow, the clustering coefficient scales nontri
ally, like C;NG021 and is larger by one to two orders o
magnitude than in the unperturbed model.

It appears that the analytic treatment can be extende
more complicated, but polynomial actions. In the pres
state of affairs the extension of our approach to more rea
tic, for example, scale-free models can only be done num
cally.

C. Conclusion

Clustering is a rather striking trait of many observed n
works. The local treelike structure characterizing most sta
models is clearly nonrealistic. We have argued elsewhere
static models are an important ingredient of network theo
Thus, we believe that it is important to be able to constr
static models with nontrivial clustering. There was som
confusion concerning the feasibility of such an enterpri
We hope to have dissipated it. For the sake of clarity we h
focused our attention on a model where much can be d
analytically. It is a specific matrix model, where matrices a
random, but their elements take values 0 and 1 only. In
zeroth order approximation it is equivalent to the classi
Erdös-Rényi model of graphs. Nontrivial clustering is gene
ated by an appropriate interaction. A comprehensive p
nomenologically oriented study is beyond the scope of t
paper and remains to be carried out. After this manusc
was completed we learned about Ref.@19#, which contains
some overlapping material.
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